Find the value of x, if cos x = sin 60 sin 30 + cos 60 cos 30
Find the value of x, if cos x = sin 60 sin 30 + cos 60 cos 30
Right Answer is:
30°
SOLUTION
Given:
cos(x) = sin(60°) * sin(30°) + cos(60°) * cos(30°)
We know the following trigonometric values:
- sin(60°) = √3/2
- cos(60°) = 1/2
- sin(30°) = 1/2
- cos(30°) = √3/2
Substituting these values into the equation:
cos(x) = (√3/2) * (1/2) + (1/2) * (√3/2)
Simplifying:
cos(x) = √3/4 + √3/4
cos(x) = 2√3/4
cos(x) = √3/2
Now, we need to find the angle x whose cosine is √3/2.
From the unit circle or trigonometric table, we know that:
cos(30°) = √3/2
Therefore,
x = 30°